Stochastic calculus of semi-Dirichlet forms with application to complement value problem for non-local operators

Wei Sun

Concordia University
Montreal, Canada

Outline

(1) Stochastic calculus of semi-Dirichlet forms

Complement value problem for non-local operators

Outline

(1) Stochastic calculus of semi-Dirichlet forms

2 Complement value problem for non-local operators

Outline

(1) Stochastic calculus of semi-Dirichlet forms

(2) Complement value problem for non-local operators

$$
\begin{aligned}
& L u= \frac{1}{2} \sum_{i, j=1}^{d} \\
&+\frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+(c(x)+\operatorname{div} \hat{b}(x)) u \\
&+\mathcal{E}(u, v)=(-L u(y)-u(x)) k(x, y) d y . \\
&= \frac{1}{2} \sum_{i, j=1}^{d} \int a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial v}{\partial x_{j}} d x-\sum_{i=1}^{d} \int b_{i}(x) \frac{\partial u}{\partial x_{i}} v(x) d x \\
&-\int c(x) u(x) v(x) d x+\sum_{i=1}^{d} \int \hat{b}_{i}(x) \frac{\partial(u v)}{\partial x_{i}} d x \\
&-\iint(u(y)-u(x)) v(x) k(x, y) d y d x .
\end{aligned}
$$

Lower bounded semi-Dirichlet form

E : locally compact separable metric space.
m : positive Radon measure on E with full support.
$D(\mathcal{E})$: dense subspace of $L^{2}(E ; m)$.
$\mathcal{E}(\cdot, \cdot)$: bilinear form defined on $D(\mathcal{E}) \times D(\mathcal{E})$.

- (lower boundedness) There exists $\beta>0$ such that

$$
\mathcal{E}_{\beta}(u, u):=\mathcal{E}(u, u)+\beta(u, u) \geq 0, \forall u \in D(\mathcal{E}) .
$$

- (weak sector condition) There exists $K \geq 1$ such that

$$
|\mathcal{E}(u, v)| \leq \sqrt{\mathcal{E}_{\beta}(u, u)} \sqrt{\mathcal{E}_{\beta}(v, v)}, \forall u, v \in D(\mathcal{E})
$$

- (closedness) $D(\mathcal{E})$ is closed w.r.t. the norm $\sqrt{\mathcal{E}_{\alpha}(\cdot, \cdot)}, \alpha>\beta$.
- (Markovian condition)
$(0 \vee u) \wedge 1 \in D(\mathcal{E})$ and $\mathcal{E}((0 \vee u) \wedge 1, u-(0 \vee u) \wedge 1) \geq 0, \forall u \in D(\mathcal{E})$.
$\left(\mathcal{E}, D(\mathcal{E})\right.$) is regular if $D(\mathcal{E}) \cap C_{c}(E)$ is uniformly dense in $C_{c}(E)$ and is \mathcal{E}_{α}-dense in $D(\mathcal{E})$ for $\alpha>\beta$.

Any regular lower bounded semi-Dirichlet form is associated with a Hunt process.

Use the theory of Markov processes to study

$$
\begin{aligned}
L u= & \frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+(c(x)+\operatorname{div} \hat{b}(x)) u \\
& +\mathrm{PV} \int(u(y)-u(x)) k(x, y) d y .
\end{aligned}
$$

Fukushima's decomposition for Dirichlet forms

Suppose $(\mathcal{E}, D(\mathcal{E}))$ is a regular Dirichlet form on $L^{2}(E ; m)$ with associated Hunt process $\left(X_{t}\right)_{t \geq 0}$. Let $u \in D(\mathcal{E})$. Then

$$
\tilde{u}\left(X_{t}\right)-\tilde{u}\left(X_{0}\right)=M_{t}^{u}+N_{t}^{u}, t \geq 0
$$

M_{t}^{u} : martingale additive functional of $\left(X_{t}\right)_{t \geq 0}$.
N_{t}^{u} : continuous additive functional with $e\left(N^{u}\right)=0$.
For additive functional $\left(A_{t}\right)_{t \geq 0}$ of $\left(X_{t}\right)_{t \geq 0}$,

$$
e(A):=\lim _{t \downarrow 0} \frac{1}{2 t} E_{m}\left(A_{t}^{2}\right) .
$$

Fukushima type decomposition for semi-Dirichlet forms Z.M. Ma, Sun and L.F. Wang (2016)

Suppose $(\mathcal{E}, D(\mathcal{E}))$ is a regular semi-Dirichlet form on $L^{2}(E ; m)$ with associated Hunt process $\left(X_{t}\right)_{t \geq 0}$.
ζ : lifetime of X.
ζ_{i} : the totally inaccessible part of ζ.
$I(\zeta):=\left[\left[0, \zeta\left[\left[\bigcup\left[\left[\zeta_{i}\right]\right] . I(\zeta)\right.\right.\right.\right.$ is a predictable set of interval type.

Let $u \in D(\mathcal{E})_{l o c}$. Then the following two assertions are equivalent to each other.
(i) There exist unique $M^{u} \in \mathcal{M}_{\text {loc }}^{I(\zeta)}$ and AF N^{u} locally of zero quadratic variation such that

$$
\tilde{u}\left(X_{t}\right)-\tilde{u}\left(X_{0}\right)=M_{t}^{u}+N_{t}^{u}, t \geq 0
$$

(ii)

$$
\mu_{u}(d x):=\int_{E}(\tilde{u}(x)-\tilde{u}(y))^{2} J(d y, d x) \text { is a smooth measure. }
$$

Fukushima type decomposition for semi-Dirichlet forms C.Z. Chen, L. Ma and Sun (2018)

Let $u \in D(\mathcal{E})_{l o c}$. Define

$$
F_{t}^{u}:=\sum_{0<s \leq t}\left(\tilde{u}\left(X_{s}\right)-\tilde{u}\left(X_{s-}\right)\right) 1_{\left\{\tilde{u}\left(X_{s}\right)-\tilde{u}\left(X_{s-}\right) \mid>1\right\}} .
$$

Then there exist unique $Y^{u} \in \mathcal{M}_{\text {loc }}^{I(\zeta)}$ and $\mathrm{AF} Z^{u}$ locally of zero quadratic variation such that

$$
\tilde{u}\left(X_{t}\right)-\tilde{u}\left(X_{0}\right)=Y_{t}^{u}+Z_{t}^{u}+F_{t}^{u}, t \geq 0
$$

Extended Nakao integral

Denote $A_{t}^{u}=\tilde{u}\left(X_{t}\right)-\tilde{u}\left(X_{0}\right)$.
Let $\Phi \in C^{2}\left(\mathbb{R}^{n}\right)$ and $u_{1}, \ldots, u_{n} \in D(\mathcal{E})_{l o c}$. Then,

$$
\begin{aligned}
& A_{t}^{\Phi(u)}=\sum_{i=1}^{n} \int_{0}^{t} \Phi_{i}\left(\tilde{u}\left(X_{s-}\right)\right) d A_{s}^{u_{i}}+\frac{1}{2} \sum_{i, j=1}^{n} \int_{0}^{t} \Phi_{i j}\left(\tilde{u}\left(X_{s}\right)\right) d\left\langle M^{u_{i}, c}, M^{u_{j}, c}\right\rangle_{s} \\
& \quad+\sum_{0<s \leq t}\left[\Delta \Phi\left(\tilde{u}\left(X_{s}\right)\right)-\sum_{i=1}^{n} \Phi_{i}\left(\tilde{u}\left(X_{s-}\right)\right) \Delta u_{i}\left(X_{s}\right)\right]
\end{aligned}
$$

on $[0, \zeta) P_{x}$-a.s. for \mathcal{E}-q.e. $x \in E$, where

$$
\Phi_{i}(x)=\frac{\partial \Phi}{\partial x_{i}}(x), \quad \Phi_{i j}(x)=\frac{\partial^{2} \Phi}{\partial x_{i} \partial x_{j}}(x), \quad i, j=1, \ldots, n
$$

and $u=\left(u_{1}, \ldots, u_{n}\right)$.

Outline

(1) Stochastic calculus of semi-Dirichlet forms

2 Complement value problem for non-local operators

Classical Dirichlet problem:

$$
\begin{cases}\Delta u=0 & \text { in } D \\ u=g & \text { on } \partial D\end{cases}
$$

D : bounded domain of $\mathbb{R}^{d}, \quad \partial D$: boundary of D.
g : real-valued continuous function on ∂D.

Kakutani (1944):

$\left(X_{t}, P_{x}\right)$: Brownian motion on \mathbb{R}^{d}.
$\tau=\inf \left\{t>0: X_{t} \notin D\right\}$: first exit time from D.

$$
u(x)=E_{x}\left[g\left(X_{\tau}\right)\right] .
$$

Dirichlet boundary value problem for second order elliptic differential operators:

$$
\begin{cases}L u=0 & \text { in } D, \\ u=g & \text { on } \partial D .\end{cases}
$$

with

$$
L u=\frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+(c(x)+\operatorname{div} \hat{b}(x)) u .
$$

Complement value problem for non-local operators:

$$
\begin{cases}L u=f & \text { in } D \\ u=g & \text { on } D^{c}\end{cases}
$$

with

$$
\begin{aligned}
L u= & \frac{1}{2} \sum_{i, j=1}^{d} \frac{\partial}{\partial x_{j}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{d} b_{i}(x) \frac{\partial u}{\partial x_{i}}+(c(x)+\operatorname{div} \hat{b}(x)) u \\
& +\mathrm{PV} \int_{\mathbb{R}^{d}}(u(y)-u(x)) k(x, y) d y .
\end{aligned}
$$

Applications in peridynamics, particle systems with long range interactions, fluid dynamics, image processing, etc.
semigroup approach: Bony, Courrège and Priouret classical PDE approach: Garroni and Menaldi viscosity solution approach: Barles, Chasseigne and Imbert; Arapostathisa, Biswasb and Caffarelli

Hilbert space approach: Hoh and Jocob; Felsinger, Kassmann and Voigt

Recent results on interior and boundary regularity of solutions.

D : bounded Lipschitz domain of \mathbb{R}^{d}.

We consider the complement value problem:

$$
\begin{cases}\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c\right) u+f=0 & \text { in } D \\ u=g & \text { on } D^{c}\end{cases}
$$

Fractional Laplacian operator $\Delta^{\alpha / 2}$:

$$
\Delta^{\alpha / 2} \phi(x)=\lim _{\varepsilon \rightarrow 0} \mathcal{A}(d,-\alpha) \int_{\{|x-y| \geq \varepsilon\}} \frac{\phi(y)-\phi(x)}{|x-y|^{d+\alpha}} d y, \quad \phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)
$$

$$
L:=\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla
$$

Z.Q. Chen and Hu (2015): the martingale problem for $\left(L, C_{c}^{\infty}\left(\mathbb{R}^{d}\right)\right)$ is well-posed for every initial value $x \in \mathbb{R}^{d}$.

$$
q_{\rho}(t, z)=t^{-d / 2} \exp \left(-\frac{\rho|z|^{2}}{t}\right)+t^{-d / 2} \wedge \frac{t}{|z|^{d+\alpha}}, \quad t>0, z \in \mathbb{R}^{d} .
$$

The Markov process X associated with L has a jointly continuous transition density function $p(t, x, y)$:

$$
C_{1} q_{C_{2}}(t, x-y) \leq p(t, x, y) \leq C_{3} q_{C_{4}}(t, x-y), \quad(t, x, y) \in(0, T] \times \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

$$
e(t):=e^{\int_{0}^{t} c\left(X_{s}\right) d s}, \quad t \geq 0
$$

Theorem (Sun, 2018a): There exists $M>0$ such that if $\left\|c^{+}\right\|_{L^{p \vee 1}} \leq M$, then for any $f \in L^{2(p \vee 1)}(D ; d x)$ and $g \in B_{b}\left(D^{c}\right)$, there exists a unique $u \in B_{b}\left(\mathbb{R}^{d}\right)$ satisfying $\left.u\right|_{D} \in H_{l o c}^{1,2}(D) \cap C(D)$ and

$$
\begin{cases}\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c\right) u+f=0 & \text { in } D, \\ u=g & \text { on } D^{c} .\end{cases}
$$

Moreover, u has the expression

$$
u(x)=E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right], x \in \mathbb{R}^{d}
$$

In addition, if g is continuous at $z \in \partial D$ then

$$
\lim _{x \rightarrow z} u(x)=u(z)
$$

$$
H_{l o c}^{1,2}(D):=\left\{u: u \phi \in H_{0}^{1,2}(D) \text { for any } \phi \in C_{c}^{\infty}(D)\right\}
$$

$\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c\right) u+f=0$ is understood in the distribution sense: for any $\phi \in C_{c}^{\infty}(D)$,

$$
\begin{aligned}
\int_{D}\langle\nabla u, & \nabla \phi\rangle d x+\frac{a^{\alpha} \mathcal{A}(d,-\alpha)}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{(u(x)-u(y))(\phi(x)-\phi(y))}{|x-y|^{d+\alpha}} d x d y \\
& -\int_{D}\langle b, \nabla u\rangle \phi d x-\int_{D} c u \phi d x-\int_{D} f \phi d x=0
\end{aligned}
$$

Corollary: If $c \leq 0$, then for any $f \in L^{2(p \vee 1)}(D ; d x)$ and $g \in B_{b}\left(D^{c}\right)$ satisfying g is continuous on ∂D, there exists a unique $u \in B_{b}\left(\mathbb{R}^{d}\right)$ such that u is continuous on $\bar{D},\left.u\right|_{D} \in H_{l o c}^{1,2}(D)$, and

$$
\left\{\begin{array}{l}
\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c\right) u+f=0 \text { in } D \\
u=g \text { on } D^{c}
\end{array}\right.
$$

Moreover, u has the expression

$$
u(x)=E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right], x \in \mathbb{R}^{d}
$$

$$
\left\{\begin{array}{l}
\mathcal{E}^{0}(\phi, \psi)=\int_{\mathbb{R}^{d}}\langle\nabla \phi, \nabla \psi\rangle d x+\frac{a^{\alpha} \mathcal{A}(d,-\alpha)}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{(\phi(x)-\phi(y))(\psi(x)-\psi(y))}{|x-y|^{d+\alpha}} d x d y \\
\quad-\int_{\mathbb{R}^{d}}\langle b, \nabla \phi\rangle \psi d x, \phi, \psi \in D\left(\mathcal{E}^{0}\right), \\
D\left(\mathcal{E}^{0}\right)=H^{1,2}\left(\mathbb{R}^{d}\right) .
\end{array}\right.
$$

Then, $\left(\mathcal{E}^{0}, H^{1,2}\left(\mathbb{R}^{d}\right)\right)$ is a regular lower-bounded semi-Dirichlet form on $L^{2}\left(\mathbb{R}^{d} ; d x\right)$.

$$
\left(X_{t}, P_{x}\right) \Leftrightarrow L=\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla \Leftrightarrow\left(\mathcal{E}^{0}, H^{1,2}\left(\mathbb{R}^{d}\right)\right)
$$

$$
u(x)=E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right], x \in \mathbb{R}^{d}
$$

U : open set of \mathbb{R}^{d}.

$$
G_{0}^{U}(x, y) \leq \begin{cases}\frac{C}{|x-y|^{d-2}}, & d \geq 3 \\ C \ln \left(1+\frac{1}{|x-y|}\right), & d=2 \\ C, & d=1\end{cases}
$$

Lemma: There exists $C>0$ such that

$$
\sup _{x \in D} E_{x}\left[\int_{0}^{\tau} v\left(X_{s}\right) d s\right] \leq C\|v\|_{L^{p \vee 1}}, \quad \forall v \in L_{+}^{p \vee 1}(D) .
$$

By Khasminskii's inequality, there exists $C>0$ such that for any

 $v \in L_{+}^{p \vee 1}(D)$ satisfying $\|v\|_{L^{p \vee 1}} \leq C$, we have$$
\sup _{x \in D} E_{x}\left[e^{\int_{0}^{\tau} v\left(X_{s}\right) d s}\right]<\infty
$$

and
$E_{x}\left[\left|\int_{0}^{\tau} e^{\int_{0}^{s} v\left(X_{t}\right) d t} f\left(X_{s}\right) d s\right|\right] \leq C\left(E_{x}\left[e^{\int_{0}^{\tau} 4 v\left(X_{s}\right) d s}\right]\right)^{1 / 4}\left(E_{x}\left[\tau^{2}\right]\right)^{1 / 4}\left\|f^{2}\right\|_{L^{p \vee 1}}^{1 / 2}$.

Then, there exists $M>0$ such that if $\left\|c^{+}\right\|_{L^{p \vee 1}} \leq M$, then for any $f \in L^{2(p \vee 1)}(D ; d x)$ and $g \in B_{b}\left(D^{c}\right), u \in B_{b}\left(\mathbb{R}^{d}\right)$.

$$
\begin{aligned}
u(x)= & E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right] \\
= & E_{x}\left[u\left(X_{t}\right)\right]+E_{x}\left[-u\left(X_{t}\right) 1_{\{\tau \leq t\}}+(e(t)-1) u\left(X_{t}\right) 1_{\{\tau>t\}}\right. \\
& \left.+e(\tau) g\left(X_{\tau}\right) 1_{\{\tau \leq t\}}+\int_{0}^{t \wedge \tau} e(s) f\left(X_{s}\right) d s\right] \\
:= & u_{t}(x)+\sum_{i=1}^{4} \varepsilon_{t}^{(i)} .
\end{aligned}
$$

u_{t} is continuous in D and each $\varepsilon_{t}^{(i)}$ converges to 0 uniformly on any compact subset of D as $t \rightarrow 0$. Hence u is continuous in D.

$$
\begin{aligned}
u(x) & =E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right] \\
& =E_{x}\left[g\left(X_{\tau}\right)\right]+E_{x}\left[w\left(X_{t}\right) 1_{\{\tau>t\}}+\int_{0}^{t \wedge \tau}(f+c u)\left(X_{s}\right) d s\right] \\
& :=\xi(x)+w(x)
\end{aligned}
$$

Suppose that $\bar{D} \subset B(0, N)$ for some $N \in \mathbb{N}$. Denote $\Omega=B(0, N)$.
Lemma: Let $\gamma \geq 0$. For any compact set K of Ω, there exist $\delta>0$ and $\vartheta_{1}, \vartheta_{2} \in(0, \infty)$ such that for any $x, y \in K$ satisfying $|x-y|<\delta$, we have

$$
\begin{cases}\frac{\vartheta_{1}}{|x-y|^{d-2}} \leq G_{\gamma}^{\Omega}(x, y) \leq \frac{\vartheta_{2}}{|x--|^{d-2}}, & \text { if } d \geq 3, \\ \vartheta_{1} \ln \frac{1}{|x-y|} \leq G_{\gamma}^{\Omega}(x, y) \leq \vartheta_{2} \ln \frac{1}{|x-y|}, & \text { if } d=2 .\end{cases}
$$

Let $z \in \partial D . z$ is a regular point of D and D^{c} for the Brownian motion in \mathbb{R}^{d}. Therefore, z is a regular point of D and D^{c} for (X_{t}, P_{x}) by Kanda (1967).

If g is continuous at $z \in \partial D$, then $\lim _{x \rightarrow z} \xi(x)=\xi(z)$.

Lemma: Let U be an open set of \mathbb{R}^{d}. Suppose that φ is a measurable function on \mathbb{R}^{d} which belongs to the Kato class.
Then, we have

$$
\lim _{t \rightarrow 0} \sup _{x \in U} E_{x}\left[\int_{0}^{t}\left|\varphi\left(X_{s}^{U}\right)\right| d s\right]=0
$$

Lemma: For any $t>0$ and $z \in \partial D$, we have

$$
\lim _{\substack{x \rightarrow z \\ x \in D}}\left(\sup _{y \in D} p^{D}(t, x, y)\right)=0 .
$$

Therefore,

$$
\lim _{t \rightarrow 0} \sup _{x \in D}\left|E_{x}\left[w\left(X_{t}\right) 1_{\{\tau>t\}}+\int_{0}^{t \wedge \tau}(f+c u)\left(X_{s}\right) d s\right]\right|=0 .
$$

$$
\begin{aligned}
u(x) & =E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right] \\
& =E_{x}\left[g\left(X_{\tau}\right)\right]+E_{x}\left[w\left(X_{t}\right) 1_{\{\tau>t\}}+\int_{0}^{t \wedge \tau}(f+c u)\left(X_{s}\right) d s\right] \\
& :=\xi(x)+w(x)
\end{aligned}
$$

$$
\xi \in H_{l o c}^{1,2}(D) \text { and } \mathcal{E}^{0}(\xi, \phi)=0, \forall \phi \in C_{c}^{\infty}(D)
$$

$$
w \in H_{0}^{1,2}(D) \text { and } \mathcal{E}^{0}(w, \phi)=(f+c u, \phi), \forall \phi \in C_{c}^{\infty}(D)
$$

$$
\Rightarrow u=\xi+w \in H_{l o c}^{1,2}(D) \text { and } \mathcal{E}^{0}(u, \phi)=\mathcal{E}^{0}(\xi+w, \phi)=(f+c u, \phi)
$$

There exists $\beta_{0}>0$ such that

$$
\int_{\mathbb{R}^{d}}|b|^{2} \phi^{2} d x \leq \frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla \phi|^{2} d x+\beta_{0} \int_{\mathbb{R}^{d}}|\phi|^{2} d x, \quad \forall \phi \in H^{1,2}\left(\mathbb{R}^{d}\right) .
$$

Define

$$
\mathcal{E}_{\beta}^{0}(\phi, \psi)=\mathcal{E}^{0}(\phi, \psi)+\beta(\phi, \psi), \quad \phi, \psi \in H^{1,2}\left(\mathbb{R}^{d}\right)
$$

Then, $\left(\mathcal{E}_{\beta}^{0}, H^{1,2}\left(\mathbb{R}^{d}\right)\right)$ is a regular semi-Dirichlet form on $L^{2}\left(\mathbb{R}^{d} ; d x\right)$ for any $\beta>\beta_{0}$.

Let $\left\{D_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of relatively compact open subsets of D such that $\bar{D}_{n} \subset D_{n+1}$ and $D=\cup_{n=1}^{\infty} D_{n}$, and $\left\{\chi_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of functions in $C_{c}^{\infty}(D)$ such that $0 \leq \chi_{n} \leq 1$ and $\left.\chi_{n}\right|_{D_{n}}=1$.

$$
\begin{aligned}
& \mathcal{E}^{0}\left(\xi \chi_{n}, \phi\right) \\
= & \lim _{t \rightarrow 0} \frac{1}{t} \int_{D_{m}} \phi(x) E_{x}\left[e^{-\beta\left(t \wedge \tau_{D_{m}}\right)} \xi\left(X_{t \wedge \tau_{D_{m}}}\right)\left(1-\chi_{n}\left(X_{t \wedge \tau_{D_{m}}}\right)\right)\right] d x \\
= & \lim _{t \rightarrow 0} \frac{1}{t} \int_{D_{m}} \phi(x) E_{x}\left[1_{\left\{\tau_{D_{m}} \leq t\right\}} e^{-\beta \tau_{D_{m}}} \xi\left(X_{t \wedge \tau_{D_{m}}}\right)\left(1-\chi_{n}\left(X_{t \wedge \tau_{D_{m}}}\right)\right)\right] d x \\
\leq & \lim _{t \rightarrow 0} \frac{1}{t} \int_{D_{m}}|\phi(x)|\left[\int_{0}^{t} \int_{\bar{D}_{m}^{c}}\left(\left.\xi(y)\left(1-\chi_{n}(y)\right) \int_{D_{m}} \frac{p^{D_{m}}(s, x, z)}{|z-y|} \right\rvert\, d z\right) d y d s\right] d x \\
= & \lim _{t \rightarrow 0} \frac{1}{t} \int_{D_{m}}|\phi(x)|\left[\int_{0}^{t} \int_{D \cap D_{n}^{c}}\left(\xi(y)\left(1-\chi_{n}(y)\right) \int_{D_{m}} \frac{p^{D_{m}}(s, x, z)}{|z-y|^{d+\alpha}} d z\right) d y d s\right] d x \\
\leq & \|\phi\|_{\infty}\|\xi\|_{\infty} \delta^{-(d+\alpha)}\left|D \| D \cap D_{n}^{c}\right| .
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{E}^{0}\left(\xi \chi_{n}, \phi\right) \\
= & \int_{\mathbb{R}^{d}}\left\langle\nabla\left(\xi \chi_{n}\right), \nabla \phi\right\rangle d x-\int_{\mathbb{R}^{d}}\left\langle b, \nabla\left(\xi \chi_{n}\right)\right\rangle \phi d x \\
& +\frac{a^{\alpha} \mathcal{A}(d,-\alpha)}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\left(\left(\xi \chi_{n}\right)(x)-\left(\xi \chi_{n}\right)(y)\right)(\phi(x)-\phi(y))}{|x-y|^{d+\alpha}} d x d y \\
= & \mathcal{E}^{0}\left(\xi, \chi_{n} \phi\right)-\int_{\mathbb{R}^{d}}\left(L \chi_{n}\right) \xi \phi d x-2 \int_{\mathbb{R}^{d}}\left\langle\nabla \xi, \nabla \chi_{n}\right\rangle \phi d x \\
& -a^{\alpha} \mathcal{A}(d,-\alpha) \int_{\mathbb{R}^{d}}\left[\int_{\mathbb{R}^{d}} \frac{(\xi(y)-\xi(x))\left(\chi_{n}(y)-\chi_{n}(x)\right)}{|x-y|^{d+\alpha}} d y\right] \phi(x) d x \\
= & \mathcal{E}^{0}(\xi, \phi)+a^{\alpha} \mathcal{A}(d,-\alpha) \int_{D_{m}} \int_{D \cap D_{n}^{c}} \frac{\xi(y)\left(1-\chi_{n}(y)\right)}{|x-y|^{d+\alpha}} d y \phi(x) d x .
\end{aligned}
$$

We will show that there exists $M>0$ such that if $\left\|c^{+}\right\|_{L^{p \vee 1}} \leq M$, then $v \equiv 0$ is the unique function in $B_{b}\left(\mathbb{R}^{d}\right)$ satisfying $\left.v\right|_{D} \in H_{l o c}^{1,2}(D) \cap C(D)$ and

$$
\left\{\begin{array}{l}
\mathcal{E}^{0}(v, \phi)=(c v, \phi), \quad \forall \phi \in C_{c}^{\infty}(D), \\
v=0 \text { on } D^{c}
\end{array}\right.
$$

$$
\begin{aligned}
& \mathcal{E}_{\beta}^{0}\left(v \chi_{n}, \phi\right) \\
= & \int_{\mathbb{R}^{d}}\left\langle\nabla\left(v \chi_{n}\right), \nabla \phi\right\rangle d x-\int_{\mathbb{R}^{d}}\left\langle b, \nabla\left(v \chi_{n}\right)\right\rangle \phi d x+\left(\beta, v \chi_{n} \phi\right) \\
& +\frac{a^{\alpha} \mathcal{A}(d,-\alpha)}{2} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \frac{\left(\left(v \chi_{n}\right)(x)-\left(v \chi_{n}\right)(y)\right)(\phi(x)-\phi(y))}{|x-y|^{d+\alpha}} d x d y \\
= & \mathcal{E}^{0}\left(v, \chi_{n} \phi\right)-\int_{\mathbb{R}^{d}}\left(L \chi_{n}\right) v \phi d x-2 \int_{\mathbb{R}^{d}}\left\langle\nabla v, \nabla \chi_{n}\right\rangle \phi d x+\left(\beta, v \chi_{n} \phi\right) \\
& -a^{\alpha} \mathcal{A}(d,-\alpha) \int_{\mathbb{R}^{d}}\left[\int_{\mathbb{R}^{d}} \frac{(v(y)-v(x))\left(\chi_{n}(y)-\chi_{n}(x)\right)}{|x-y|^{d+\alpha}} d y\right] \phi(x) d x \\
= & \left((c+\beta) v \chi_{n}-\left(L \chi_{n}\right) v-2\left\langle\nabla v, \nabla \chi_{n}\right\rangle\right. \\
& \left.-a^{\alpha} \mathcal{A}(d,-\alpha) \int_{\mathbb{R}^{d}} \frac{(v(y)-v(\cdot))\left(\chi_{n}(y)-\chi_{n}(\cdot)\right)}{|\cdot-y|^{d+\alpha}} d y, \phi\right) \\
:= & \left(\theta_{n}, \phi\right) .
\end{aligned}
$$

For $n>m$, define

$$
\eta_{m, n}(x)=E_{x}^{\beta}\left[\left(v \chi_{n}\right)\left(X_{\tau_{D_{m}}}\right)\right], \quad x \in \mathbb{R}^{d}
$$

We have $\eta_{m, n}(x)=E_{x}^{\beta}\left[\eta_{m, n}\left(X_{t \wedge \tau_{D_{m}}}\right)\right], t \geq 0, x \in D_{m}$, $\eta_{m, n}(x)=v \chi_{n}(x)$ for q.e. $-x \in D_{m}^{c}$, and

$$
\mathcal{E}_{\beta}^{0}\left(v \chi_{n}, \phi\right)=\mathcal{E}_{\beta}^{0}\left(v \chi_{n}-\eta_{m, n}, \phi\right), \quad \forall \phi \in H_{0}^{1,2}\left(D_{m}\right)
$$

For $d x$-a.e. $x \in D_{m}$,

$$
\left(v \chi_{n}-\eta_{m, n}\right)(x)=E_{x}^{\beta}\left[\left(v \chi_{n}-\eta_{m, n}\right)\left(X_{t \wedge \tau_{D_{m}}}\right)\right]+E_{x}^{\beta}\left[\int_{0}^{t \wedge \tau_{D_{m}}} \theta_{n}\left(X_{s}\right) d s\right], \forall t \geq 0
$$

For $d x$-a.e. $x \in D$,

$$
v(x)=E_{x}^{\beta}\left[v\left(X_{t}\right) 1_{\{\tau>t\}}\right]+E_{x}^{\beta}\left[\int_{0}^{t \wedge \tau}((c+\beta) v)\left(X_{s}\right) d s\right], \quad \forall t \geq 0 .
$$

Define

$$
\mathcal{I}_{t}=v\left(X_{t}\right) 1_{\{\tau>t\}}+\int_{0}^{t \wedge \tau}((c+\beta) v)\left(X_{s}\right) d s
$$

Then, $\left(\mathcal{I}_{t}\right)_{t \geq 0}$ is a martingale under P_{x}^{β} for $d x$-a.e. $x \in D$.
By integration by parts formula for semi-martingales, we can show that

$$
v(x)=E_{x}\left[e(t) v\left(X_{t}\right) 1_{\{\tau>t\}}\right], \quad d x-\text { a.e. } x \in D .
$$

D : bounded Lipschitz domain of \mathbb{R}^{d}.
We consider the complement value problem:

$$
\begin{cases}\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}\right) u+f=0 & \text { in } D \\ u=g & \text { on } D^{c}\end{cases}
$$

$\hat{b}=\left(\hat{b}_{1}, \ldots, \hat{b}_{d}\right)^{*}$ satisfying $|\hat{b}| \in L^{2(p \vee 1)}(D ; d x), c+\operatorname{div} \hat{b} \leq h$ for some $h \in L_{+}^{p \vee 1}(D ; d x)$ in the distribution sense.

Let $\phi \in H^{1,2}\left(\mathbb{R}^{d}\right)$. By Ma, Sun and Wang (2016), ϕ admits a unique Fukushima type decomposition

$$
\tilde{\phi}\left(X_{t}\right)-\tilde{\phi}\left(X_{0}\right)=M_{t}^{\phi}+N_{t}^{\phi}, \quad t \geq 0
$$

where $\left(M_{t}^{\phi}\right)_{t \geq 0}$ is a locally square integrable martingale additive functional and $\left(N_{t}^{\phi}\right)_{t \geq 0}$ is a continuous additive functional locally of zero quadratic variation.

By the Lax-Milgram theorem, for any vector field $\eta \in L^{2}\left(\mathbb{R}^{d} ; d x\right)$, there exists a unique $\eta^{H} \in H^{1,2}\left(\mathbb{R}^{d}\right)$ such that

$$
\int_{\mathbb{R}^{d}}\langle\eta, \nabla \phi\rangle d x=\mathcal{E}_{\gamma}^{0}\left(\eta^{H}, \phi\right), \quad \forall \phi \in H^{1,2}\left(\mathbb{R}^{d}\right)
$$

where $\gamma=\beta_{0}+1$.

For $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we have

$$
\int_{0}^{t} \operatorname{div} \phi\left(X_{s}\right) d s=N_{t}^{\phi^{H}}-\gamma \int_{0}^{t} \phi^{H}\left(X_{s}\right) d s, \quad t \geq 0
$$

$$
e(t):=e^{\int_{0}^{t} c\left(X_{s}\right) d s+N_{t}^{\hat{t}^{H}}-\gamma \int_{0}^{t} \hat{b}^{H}\left(X_{s}\right) d s}, \quad t \geq 0
$$

Theorem (Sun, 2018b): There exists $M>0$ such that if $\|h\|_{L^{p \vee 1}} \leq M$, then for any $f \in L^{4(p \vee 1)}(D ; d x)$ and $g \in B_{b}\left(D^{c}\right)$, there exists a unique $u \in B_{b}\left(\mathbb{R}^{d}\right)$ satisfying $\left.u\right|_{D} \in H_{l o c}^{1,2}(D) \cap C(D)$ and

$$
\begin{cases}\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}\right) u+f=0 & \text { in } D, \\ u=g & \text { on } D^{c} .\end{cases}
$$

Moreover, u has the expression

$$
u(x)=E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right] \text { for q.e. } x \in D .
$$

In addition, if g is continuous at $z \in \partial D$ then

$$
\lim _{x \rightarrow z} u(x)=u(z)
$$

Corollary: If $c+\operatorname{div} \hat{b} \leq 0$, then for any $f \in L^{4(p \vee 1)}(D ; d x)$ and $g \in B_{b}\left(D^{c}\right)$ satisfying g is continuous on ∂D, there exists a unique $u \in B_{b}\left(\mathbb{R}^{d}\right)$ such that u is continuous on \bar{D}, $\left.u\right|_{D} \in H_{l o c}^{1,2}(D)$, and

$$
\begin{cases}\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}\right) u+f=0 & \text { in } D \\ u=g & \text { on } D^{c} .\end{cases}
$$

Moreover, u has the expression

$$
u(x)=E_{x}\left[e(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e(s) f\left(X_{s}\right) d s\right] \text { for q.e. } x \in D .
$$

Define

$$
J(x)=\frac{1_{\{|x|<1\}} e^{-\frac{1}{1-|x|^{2}}}}{\int_{\{|y|<1\}} e^{-\frac{1}{1-|y|^{2}} d y}}, x \in \mathbb{R}^{d}
$$

For $k \in \mathbb{N}$ and $x \in \mathbb{R}^{d}$, set $J_{k}(x)=k^{d} J(k x)$ and

$$
\hat{b}_{k}=\hat{b} * J_{k}, \quad c_{k}=c * J_{k}, \quad h_{k}=h * J_{k} .
$$

Define

$$
e_{k}(t):=e^{\int_{0}^{t}\left(c_{k}+\operatorname{div} \hat{b}_{k}\right)\left(X_{s}\right) d s}, \quad t \geq 0
$$

The unique bounded continuous weak solution to the complement value problem

$$
\left\{\begin{array}{l}
\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c_{k}+\operatorname{div} \hat{b}_{k}\right) u_{k}+f=0 \text { in } D \\
u_{k}=g \text { on } D^{c}
\end{array}\right.
$$

is given by

$$
u_{k}(x)=E_{x}\left[e_{k}(\tau) g\left(X_{\tau}\right)+\int_{0}^{\tau} e_{k}(s) f\left(X_{s}\right) d s\right], \quad x \in \mathbb{R}^{d}
$$

Lemma: Suppose that $u \in B_{b}\left(\mathbb{R}^{d}\right)$ satisfying $\left.u\right|_{D} \in H_{l o c}^{1,2}(D)$ and $\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}\right) u+f=0$ in D. Then, $\left.u\right|_{D}$ has a locally Hölder continuous version.

Weak Harnack inequality:
$\mathcal{L}:=\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}$.
There exist positive constants c_{1}, c_{2} and ϱ_{0} such that for any $x_{0} \in \mathbb{R}^{d}, R \in(0,1), v \in H^{1,2}\left(B_{R}\left(x_{0}\right)\right)$ satisfying $v \geq 0$ in $B_{R}\left(x_{0}\right)$ and $(-\mathcal{L} v, \phi) \geq 0$ for any nonnegative $\phi \in C_{c}^{\infty}\left(B_{R}\left(x_{0}\right)\right)$, we have

$$
\begin{aligned}
\inf _{B_{R / 4}\left(x_{0}\right)} v \geq & c_{1}\left(\left|B_{R / 2}\left(x_{0}\right)\right|^{-1} \int_{B_{R / 2}\left(x_{0}\right)} \nu^{\varrho_{0}} d x\right)^{1 / \varrho_{0}} \\
& -c_{2} R^{2} \sup _{x \in B_{R / 2}\left(x_{0}\right)} \int_{\mathbb{R}^{d} \backslash B_{R}\left(x_{0}\right)} \frac{v^{-}(z)}{|x-z|^{d+\alpha}} d z .
\end{aligned}
$$

Lemma: Let C, R be two positive constants and μ be a function on \mathbb{R}^{d} with $\operatorname{supp}[\mu] \subset B_{R}(0)$.
(i) Suppose $d \geq 2$. Then, there exist positive constants C_{1}, C_{2} which are independent of μ such that for any $t>0$ and $x \in D$,

$$
\begin{aligned}
& \int_{0}^{t} \int_{y \in \mathbb{R}^{d}}\left(s^{-d / 2} \exp \left(-\frac{C|x-y|^{2}}{s}\right)+s^{-d / 2} \wedge \frac{s}{|x-y|^{d+\alpha}}\right)|\mu(y)| d y d s \\
& \leq C_{1}\left(t^{\beta+1-d / 2}+t^{\delta}\right)\left(\int_{y \in \mathbb{R}^{d}}|\mu(y)|^{p} d y\right)^{1 / p}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{0}^{t} \int_{y \in \mathbb{R}^{d}}\left(s^{-(d+1) / 2} \exp \left(-\frac{C|x-y|^{2}}{s}\right)+s^{-(d+1) / 2} \wedge \frac{s}{|x-y|^{d+1+\alpha}}\right)|\mu(y)| d y d s \\
& \leq C_{2}\left(t^{(1-\gamma) / 2}+t^{\delta}\right)\left(\int_{y \in \mathbb{R}^{d}}|\mu(y)|^{2 p} d y\right)^{1 /(2 p)}
\end{aligned}
$$

(ii) Suppose $d=1$. Then, for any $t>0$ and $x \in D$,

$$
\begin{aligned}
& \int_{0}^{t} \int_{-\infty}^{\infty}\left(s^{-1 / 2} \exp \left(-\frac{C|x-y|^{2}}{s}\right)+s^{-1 / 2} \wedge \frac{s}{|x-y|^{1+\alpha}}\right)|\mu(y)| d y d s \\
\leq & 4 t^{1 / 2} \int_{-\infty}^{\infty}|\mu(y)| d y
\end{aligned}
$$

and there exists a positive constant C_{3} which is independent of μ such that for any $t>0$ and $x \in D$,

$$
\begin{aligned}
& \int_{0}^{t} \int_{-\infty}^{\infty}\left(s^{-1} \exp \left(-\frac{C|x-y|^{2}}{s}\right)+s^{-1} \wedge \frac{s}{|x-y|^{2+\alpha}}\right)|\mu(y)| d y d s \\
\leq & C_{3}\left(t^{1 / 6}+t^{\delta}\right)\left(\int_{-\infty}^{\infty}|\mu(y)|^{2} d y\right)^{1 / 2} .
\end{aligned}
$$

Uniqueness of solution

We will show that $v \equiv 0$ is the unique function in $B_{b}\left(\mathbb{R}^{d}\right)$ satisfying $\left.v\right|_{D} \in H_{l o c}^{1,2}(D) \cap C(D)$ and

$$
\left\{\begin{array}{l}
\left(\Delta+a^{\alpha} \Delta^{\alpha / 2}+b \cdot \nabla+c+\operatorname{div} \hat{b}\right) v=0 \text { in } D \\
v=0 \text { on } D^{c}
\end{array}\right.
$$

$$
\mathcal{E}_{\beta}^{0}\left(v \chi_{n}, \phi\right)=\left(\theta_{n}, \phi\right)-\int_{\mathbb{R}^{d}}\left\langle\hat{b}, \nabla\left(v \chi_{n} \phi\right)\right\rangle d x .
$$

For $d x$-a.e. $x \in E_{l} \cap D$,

$$
\begin{aligned}
v(x)= & E_{x}^{\beta}\left[v \left(X_{\left.\left.t \wedge \tau_{E_{l} \cap D}\right)\right]+E_{x}^{\beta}\left[\int_{0}^{t \wedge \tau_{E_{l} \cap D}}((c+\beta) v)\left(X_{s}\right) d s\right]}\right.\right. \\
& +E_{x}^{\beta}\left[\int_{0}^{t \wedge \tau_{E_{l} \cap D}} v\left(X_{s-}\right) d N_{s}^{\beta, \hat{b}^{H}}\right], \quad \forall t \geq 0 .
\end{aligned}
$$

